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TIME VARYING SPECTRAL CHARACTERISTICS OF STRONG
GROUND MOTIONS: THE IMPERIAL VALLEY, CALIFORNIA
EARTHQUAKE OF OCTOBER 15, 1979

INTRODUCTION

The instruments used for strong ground motion measurements record time variation
of ground acceleration, velocity, or displacement. The frequency content of the motion
is determined from the Fourier spectrum obtained by taking the Fourier transform of the
recorded time series. The Fourier spectrum is a complex quantity that consists of two parts,
the amplitude spectrum, and the phase spectrum. The amplitude spectrum gives a measure
of contribution from each frequency to the total energy (i.e. mean square value) of the
signal, whereas the phase spectrum gives a measure of the transient properties of the signal.
There is a one-to-one correspondance between the time series and its complex Fourier
spectrum. In other words, any given pair of amplitude and phase spectra corresponds to
a specific time series, and any given time series correspond to a specific pair of amplitude
and phase spectra. Most of the past research has been concentrated on the amplitude
spectrum. There are analytical models developed that can approximate the amplitude
spectrum in terms of source, path, and site parameters (see Boore, 1986 for an extensive
review and references). Without the phase spectrum, however, the amplitude spectrum
alone does not provide any information on the transient characteristics of the motion.
Studies on recorded ground motions indicate that the phase spectrum is very random,
especially for large magnitude earthquakes; thus, it is hard to parameterize or to develope
an approximate analytical model.

An alternate way of tracking transient characteristics of ground motions is to take the
Running Fourier Transform, instead of the ordinary Fourier transform of the recorded time
series. The running Fourier transform is the Fourier transform taken after multiplication
of the original time series by a running window. Thus, the running Fourier transform is
not only a function of frequency, but also function of time, defined by the location and
the shape of the window. The running Fourier transform leads to the development of the
Physical Spectra, or the Tsme-Varying Spectra, which is the extension of the concept of
power spectra for stationary time series to nonstationary time series. The physical spectra
give the distribution of energy with time and frequency, and allow to track the variation
of frequency characteristics of the motion with time, as well as the variation of temporal
characteristics with frequency. The word energy used here refers to the energy of the time
series (i.e. its mean square value), not to the energy of the ground motion, unless the time
series represent the ground velocity. ]

In this report, first the theoretical basis and derivations for the concepts of the run-
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ning Fourier transform and time-varying spectra are presented. Then, its application for
studying two-component horizontal ground motions and their correlations is outlined. An
example for the concept is given by using a data set from the October 15, 1979 Impe-
rial Valley, California earthquake. The results from this methodology can have various
applications. In particular, they can be used to calculate structural response under multi-
component ground excitation by using random vibration theory. To give an example,
equations for the response of a 2-DOF oscillator under arbitrarily oriented bi-directional
base excitation are given in Appendix-I at the end of the report.

TIME-VARYING POWER SPECTRUM

One of the approaches to study nonstationary time series is to calculate the time-
varying spectrum (i.e. physical spectrum) of the time series. In this section, a short
summary of the concept of time-varying spectrum will be given. A more detailed treatment
of the subject can be found in a long paper by Mark (1970).

Consider a process {z(t),t = [0,T4]} representing an ensemble of acceleration time
histories of duration Ty, and a window function w(t), t = [T, Ty]. Define a new function
r(s,t) by taking the product

>

r(st) =z (s) w(t — s) (1)

r(s,t) corresponds to the acceleration time history isolated by the window function in the
neighborhood of time ¢. The corresponding spectral content of (s, t) is obtained through
the Fourier transform

F(f,tw) = / r(t,5) exp(=i2nfs) ds = / () wit—o)] exp(-iznss) ds (2

In Eq. 2 f represents the frequency and i = /—1. Eq. 2 is referred to as the Running
Fourier Transform because of its dependence on the time ¢. For a discrete time series
one can generate as many Fourier transforms as there are number of points in the time
series. Note that the index w is left in the argument of F to show that F depends on the
characteristics of w. _

The concept of power spectrum for stationary processes can be extended to nonsta-
tionary processes by making use of the running Fourier transform, provided that w (t) is
properly defined. Let U(t) denote the instantaneous power of z(t) at time ¢. U(t) is defined
by the equation N
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U(t) = / E[F (f,tw) F* (f,t;w)] d&f (3)

-0

where superscript * denotes the conjugate and E denotes the ensemble average. The
integrand in Eq. 3 has the same formal definition as the power spectrum. It represents
the frequency distribution of the energy of z(t) in the neighborhood of t as defined by
w (t). This integrand is referred to as a physical spectrum and is formally defined by the
expression

S. (f,tw) = E[F (f,t;0) F* (f,t;w)]

= E{I /[z (s)w(t- s)] exp(—i2mfs) ds |2} “

0

S is a real positive quantity and an even function of f for all values of ¢t and for any choice
of w. The total energy V (i.e. the energy of the time series, not necessarely the energy of
the ground motion) of the process {z (t)} is defined by the expression

400 400

V=7Uma=/./54ﬂm@#a (5)
0 —00 —00

Hence, S; (f,t;w) represents a simultaneous decomposition of the expected energy with
time and frequency. If ¢ and f are assumed to be the horizontal coordinates, and S, the
vertical coordinate, then the volume under S, gives the total energy of the signal. It can
be shown by using the Parseval’s theorem that

00 400 +o0
/xz(t)dt=/ /S,(f,t;w)dfdt:V (6)

which gives the normalization condition for w(t). By using Eq. 1 in Eq. 6, the normaliza-
tion condition is obtained as

too 2
/ ()] a=1 | )

The preceeding development defining the physical spectrum and related concepts
would have equally been established from a frequency domain approach. If W (f) is the
Fourier transform of w (t), then by virtue of Parseval’s theorem and Eq. 7
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/|W(f)| af =1 (8)

It can be proven by using the frequency convolution theorem that the frequency-based
definition of the physical spectrum is given by

+co
Sz (.f,t;w)=E{| fW(f—y) X (y)exp(—i27ryt)dyl } (9)

where X (g) is the Fourier transform of z (t). The expected energy spectrum in the neigh-
borhood of the frequency f is given by

+ 0o

Q) = [ s.(rtw) & (10)

-0

This indicates that S, can also be interpreted as a non-negative time decomposition of
the locally averaged value of the expected energy spectrum in the neighborhood of f. The
concept of physical spectra has been used in stochastic modeling of earthquake ground
motions (Tilliouine, 1982; Bendimerad, 1984), and in wave studies of earthquake time
histories (Hoshiya, 1979).

The concept of time-varying spectrum described above for a single time series (i.e.
one-directional ground motion) can easily be extended to two-directional time series. If
z(t) and y(t) denote the orthogonal components of the horizontal ground motion, the time-
varying spectral resolution of the motion can be defined by a two-dimensional matrix [S].
The diagonal elements S, and Sy of [S] denote the physical spectra of z () and y (t) as
defined by Eq. 4 or Eq. 9 ; the off-diagonal elements S,, and S, of [S] denote the cross
(i.e. non-physical) spectra. S;, is given by

~+00

Szy(f,t;w) =E{[ [ z(s)w(t — 5) exp(—1 27 f5) ds] x

—00

~+ 0o

[ / y(s)w(t — 8) exp(—i 27 f5) ds] } ‘ (11)

—Cco
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As explained earlier the physical spectra S; and S, are always positive. The non-physical

spectra S;, and S,; are generally complex quantities. However, one can easily show that

Say (fitiw) = S;z (f,t;w) (12)
so that
| Szy (f’t; w) I=| Syz (f’t; w) | (13)

That is, S;, and S,; have the same amplitude spectrum. Hence, if the phase of S;, and
Sy are not of concern, only three spectra (two physical spectra and one cross spectrum)
are necessary to define the time-dependent resolution of the two-directional horizontal
ground motions.

The preceding developments pertaining to the physical spectrum and related concepts
have been presented from a stochastic approach. It must be clear, however, that when the
ensemble average symbol E is removed from the equations, all the definitions and their
properties are still valid for a single time series z(t).

SELECTION AND CHARACTERISTICS OF THE WINDOW FUNCTION

- In the preceding sections, it was pointed out that the physical spectrum depends on
the choice of the window function. This can be explained from the interpretation of Eqs. 4
and 9. In Eq. 4, S; (f,t; w) can be interpreted as the description of the properties of z(t)
at time ¢ in a small time window prescribed by w(t), whereas in Eq. 9, it is the description
of the properties of X(f) at frequency f about a small frequency window prescribed by
W(f). Thus, the extent and character of this time and frequency smearing is controlled
by the window function pair w (t) and W (f).

Basically, windowing forces us to look at the data through a narrow strip. Intuitively,
we would like to choose the window function so as to capture the detailed properties of
the signal in the time domain, and at the same time, keep the bandwidth of the window
spectrum narrow enough to insure high frequency resolution. As it is well known, this can
not be achieved in both domains simultaneously, because of the inherent property of the
Fourier decomposition that sharp phenomena in the time domain results in broad spectra
in the frequency domain, and vice-versa. Phrased differently, the larger the length of the
window w (t), the narrower the frequency width of W (f); and consequently, the more
accurate spectral decompositon, but less accurate time resolution. v

Thus, in generating a particular S (f,t; w) it is possible to specify any desired fine time
resolution, at the expense of the frequency resolution; or, any desired frequency resolution,
at the expense of the time resolution. The question is then how to choose a Fourier window
pair that provides an optimum simultaneous time and frequency resolution. Unfortunately,



there is no clear-cut answer to this question. The answer is generally different for each
specific signal, and is usually dictated by the nature of the problem.

Although there is no specific theory of window selection, one should look for trends
and establish guidelines in order to arrive at an acceptable choice for the window function.
For example, it is clear that a pulse or a rectangular function is a poor choice for a
window, because of sharp discontinuities at the ends. We have tested various types of
window functions for processing earthquake accelerograms, and investigated their time
and frequency resolutions. Following are the guidelines that we propose:

1. The window should be a smooth function that highly concentrates on the point
about which the average is taken, but yet has a width large enough to insure
an acceptable spectral resolution. The justification for this point should be clear
from the preceding discussion.

2. The window should have tails that gradually reduces the signal to zero (or to a
value very close to zero) at the truncation points. Windowing introduces a sharp
discontinuity at each end-point of the window. The Fourier transform is very
sensitive to such discontinuity which causes Gibbs effects or ringing. A window
with rounded corners that gradually taper at the ends reduces that effect.

3. It is advantageous to choose a real and even window function, so that the Fourier
transform would also be real and even. This can save a considerable amount of

computation time.

4. Finally, we must recall that the window function must satisfy the normalization
condition given by Eqgs. 7 and 8.

A class of functions that fit the proposed guidelines quite well is that of the Gaussian
type. These functions have the property of being self-reciprocal; that is, the Fourier
transform of a Gaussian function is also Gaussian. We select the following pair of Gaussian
type functions to represent windows in time and frequency domains

w(t) = Wexp(—%) (14)

exp(_g-) (15)

W(f)= 2
f

1
(ﬂ.) 1/4\/&7

o: and o7 denote the standard deviations (i.e. half of the distance between the inflection
points) of Gaussian type window functions in time and frequency domains, respectively.
They will be referred as the half-widths of the windows. It can be shown by straight



forward integration that w(t) and W(f) are Fourier transform pairs, and

1
Ot 0f = (18)

Eq. 16 clearly shows why an increase in the resolution in one domain causes a decrease in
the resolution in the other domain (i.e. a decrease in the time width causes an increase
in the frequency width and vice-versa). The values of window functions at the origin are

w(O) = 1['_1/%_\/;7. and W(O) = "_I/Tl—\/T—f (17)
Eqs. 14 and 15 satisfy the normalization conditions
o0 2 +o0 1 t2
f_w wa= [ ——ep(-p)d=1 (18)
Twina= [ A en-Lya - (19)
—co —co ﬁaf 0?

A simple way of provix;g‘Eqs. 18 and 19 is to note that the integrands are Gaussian
distribution functions with means equal to zero and standard deviations equal to o;/ V2
and o5/ V2, respectively. Thus, their integral from —oo to +oo are equal to one.

The window function needs to be truncated such that it gradually reduces the signal
to zero at the window end-points. The Gaussian function, however, approaches to zero
only in the limit case (i.e. ast — oo0). For simplicity, we represent the length of the window
as a multiple of its width. We also require that the number of discrete points within the
window is equal to a power of two, so that the FFT (Fast Fourier Transform) techniques
can be used. Mathematically, these conditions are given in the time domain as

L, =2 At > k- 20, (20)

where L; is the window length, At is the sampling interval, and p and k are integers. For
a specified value of L, the frequency resolution of the window (i.e. the lower and upper
bounds of the frequency band that can be resolved) is described by

1 1

fmin = 'i" and f max

= — 21
¢ 2At ( )

Thus, in a time series of given At, by specifying only the window length L; (or the window
half-width o; and integer k) all the characteristics of the time-frequency resolution of the

‘1

signal are defined.



APPLICATION TO IMPERIAL VALLEY EARTHQUAKE DATA

The concept of physical spectrum described above is applied to a data set from October
15, 1979, Imperial Valley, California earthquake. The data set consists of three-component
acceleration records from 22 stations. Only horizontal components of the recordings are
considered. In each station, the time-varying spectrum for horizontal components and
their cross spectrum are calculated by using the methodology described above.

First, the original data, which had a sampling rate of 100 points-per-second (corre-
sponding frequency band is 50 Hz), were filtered with a bi-directional Butterworth filter
and decimated to 25 samples-per-second (corresponding frequency band is 12.5 Hz). This
is done to reduce the computational work, and is justifed since the frequency band that
is of interest in engineering design is usually less than 10 Hz. After testing several alter-
natives, the window half-width is taken as o; = 1.06 seconds, and the window length is
assumed to be five times of the window width (i.e. 100;), which gives L; = 10.6 seconds,
and is equivalent to 256 discrete time points. From Eq. 2, by putting ¢ = 50, it can be
shown that above values correspond to an amplitude reduction of 3.7 x 1076 (i.e. e7!2:5)
of the peak at the truncation points of the window. The frequency resolution, from Eq.
21, is fmin = 0.094 Hz and fma.x = 12.5 Hz.

The results are plotted in Figs. 2 for all the stations, which include recorded horizontal
acceleration time histories, time-varying spectra of each component, and the cross spectra
for each station. The figures clearly show that the spectral characteristics of the motion
change with time. It is also clear from the figures that the horizontal components are
highly correlated at certain frequency and time bands.

The time-varying spectra and cross spectra present significant information on the
rupture process of the earthquake and its propagation. The extraction of this information
requires a close inspection of all the plots, incorporating the information on the epicentral
distances, site conditions and recording directions. This work is currently in progress.

Another use of the two-dimensional time varying spectrum is the calculation of bi-
directional response of structures under multi-component base excitation. This problem
has been investigated by using a statistical approach by Safak and Bendimerad (1986).
The problem can also be addressed analytically by using the random vibration theory.
Equations for the response of a 2-DOF oscillator under arbitrarily oriented bi-directional
base motion are given in Appendix-I at the end of the report.

SUMMARY AND CONCLUSIONS

The concepts of running Fourier transform and time-varying spectrum, and their use
in analyzing ground motion recnrdings are presented. The running Fourier transform is the
Fourier transform taken after multiplication of the original time series by a'running time

window. By using the running Fourier transforms, time-varying spectral characteristics



of ground motions can be investigated. The window function should satisfy certain con-
ditions, so that optimum resolutions in frequency and time domains are obtained. These
conditions are presented in the report. The concept is applied to a data set from the
October 15, 1979 Imperial Valley, California earthquake. The time-varying spectra and
cross-spectrum for horizontal components of the recorded motions at 22 stations are cal-
culated, and plotted in Figs. 2. The results show that the spectral content of the motion
varies with time. The results also show that the correlation of the horizontal components
are both time and frequency dependent. The methodology can have various practical
applications. In particular, it can be used to calculate structural response under multi-
component ground excitation. To give an example, the response of a 2-DOF oscillator
subjected to bi-directional, arbitrarily oriented base excitation is presented in Appendix-I.
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APPENDIX-1. RESPONSE OF 2-DOF OSCILLATOR TO ARBITRARILY
ORIENTED TWO-DIRECTIONAL BASE MOTION

Figure A.1 shows the schematic of the problem, and the notation. The base accelera-
tions in z and y directions are

@, = —aycos B + agsin @ (A1)

ay = —aysinf — az cos b (A.2)
Assuming that there is no torsional vibrations, the equations for the vibration of the
oscillator in z and y directions are

E+26,(2nf2)2 + (2nfz) 2z = a, (A.3)

j+ 2£y (Zny)g + (27rfy)2y =ay (A°4)

where f, f, are the natural frequencies, and &, £, are the damping ratios for z and y
directions. By using the methods of random vibration theory, the time-varying spectra of
the response for the z direction, S;.(f,t) can be calculated from the following equation

<00

Szz(f,t) = / Sa.a. (frt) Mz (fyt — u) du (A.5)

— 00

where S;_,, (f,t) denotes the time-varying spectra of acceleration component a,. M;(f,t)
is defined as

M. (f,6) = / H.(f — D) H2(S + 2) exp(~i2not) do (45)
H_(f) is the frequency response function for the z direction, and is given by

Ho(f) = [~(2nf)? +i26u(enfs) 2nf) + (27 12)?] "1 (A7)

Similarly, for the response in the y direction

+ o0

Sﬂﬂ(f,t):: / a,a,(f, ) f,t"u)d (A.8)
where
M,(f,t) = f H,(f - %)H;(f + %) exp(—i2rgt)dg (A.9)

-—00
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and

B,(f) = [-(2nf)? +i2¢,(2nsy) 2n) + (2n1,)?] (4.10)

In order to complete the calculations, S, .. and Sa,a, need to be calculated in terms of
the time-varying spectra and cross spectra of the excitation a; and a;. It can be written
from Eqs. A.1 and A.2 that

Sa.a. (ft) = Saya, (f5t) c08? 0 + Saya, (f,2) sin® 0 + [Sa,a, (f5t) + Saga, (f,t)]sin 8 cos 8
(A.11)
Saya, (f3t) = Saya, (£,1) sin® 0 + Sazas (£, 1) cos? 0+ [Sayas (fst) + Saza, (f,t)]sinfcos 8
‘ (A.12)
Sa,a; Saza; and Sg,,4, are calculated in terms of running Fourier transforms of a; and a,
as given by Egs. 4 and 11. S;; and S,, give all the information on the second order
statistics of the response.



FIG. 1.

FIG. 2.

FIG. A.1.

FIGURE CAPTIONS
Gaussian-type window function and its Fourier amplitude spectrum.

Horizontal acceleration records, and their time-varying power spectra and cross spec-
trum from The Imperial Valley, California, Earthquake of October 15, 1979 (22 sta-

tions).

Schematic of a 2-DOF oscillator subjected to arbitrarily oriented bi-directional base

motion.



12
w(t)=wg exp (- )
202
T t
Oy 0;=1.06 sec.
Wo L{=100;=10.6 sec.
3.7 X 10 °wg
T ! t
Lt=100}
< ]
(-
W(f)=Wgexp| -

FIG. 1. Gaussian-type window function and its Fourier

amplitude spectrum



& CENNS GRMAT 7, 230 MEGAEES

. BDGDD -~ '.
% 7000 ]
8 g
% i:ﬂoo E g 19 f
S %o 3 §
L, E } , .
S R T
i.;‘ ‘bo‘)c : E "
o g
8t
~+ 1 it & +
§r 6 CENTAS @MMaT 7. (8D BECOEES
i..
. 00gp Ef
Q . 8|
S 2009 i b‘ : F
3 ; °""W,' ! “V%‘/"““xwﬁ"wwm.wm
Q@ '
'C) 0009 8l | \ rl
&
vy
8
; 3 1 Tt % *
“3oog
. El Centro Array 7
D
& 3000
g 230 - 140 Degrees
& 2C300
0
1%l
c

-

FIG. 2. Horizontal acceleration records and their time-varying power
spectra and cross-spectra cross-spectrum from the Imperial

Valley, California earthquake”of October 15, 1979 (22 stations).



NN P
%

W v.r"'
W
\

vﬂ

WW"W

W,
w (]
*

f

El Centro Array 6

<

g 883588 ¢§ " g g &
5 s 3 % = o 3 & 8
~ w “r -« ~ - o -

AVOL =L WML el S VO A WML TS

230 - 140 Degrees

g 2
Xl .
b} vl

4o

WML IS

LY
T

A B A A A Ay

e

[ .

=)

(cont.)

FIG. 2.




SFECTRUM X—COMP.

SPECIRUM Y—-COMP.

SPLCCTRUM

CRUSS

500(_3
S00cq
4(‘,%0
30e 50
25 %

00

METQET (@ TRV

NN

09

L

g4 11!
A

FIG. 2. (cont.)

(3

| I“‘ "

" 6L CIETRE BON0S CRORER. 230 DEORLES

i | “’if*f YT

L
L 2

|
W LL' ](’*rk"””‘ I

e
s
'-*-2_—..

El Centro Bonds Corner

230 - 140 Degrees



SPECTRUM X—-COMP.

SFECTRUM Y—-COMP.

CRNSS  SPECTRUM

& CBNUAS 0. N0 EELALE)

il
‘. | "# {‘lM‘M‘“{v"W‘w"),‘k‘v'VJMw
|

1 T + %

S CRXETRE ARMIT §. 28D MICAEES

El Centro Array 8
230 - 140 Degrees

FIG. 2. (cont.)

A



SPECTRUM X—COMP.

SPECTRUM Y—COMP.

CROSS SPECTRUM

20%0
10030 R
Q

[

~

5[)()30 N
939 :
3o =
~

Ay =
o |
oo, o M

0000 |

1 ()030

FIG. 2.

720

FCLOLEWTT (S0 OV

ACCOLEMAT IO IO/ /D)

(cont.)

& LA §. W0 QECALEY

f

{"F ltgsihw’\“"w// NN s

!
I

!
gt
‘ t v Tt : *
i 3 & CIAS WA §. 3 MCAES
; b
! L
|
. ' i f "
Ty R e
& '
1
§: { * * * +*

El Centro Array 5
230 - 140 Degrees



SPECTRUM X-COMP.

SPECTRUM Y—COMP.

CRNSS  SPECTRUM

3000

20009

IQQ:)O

20009

1 Qooc

1 d0gc

FIG. 2.

[

(cont.)

h -
FELTEWTIEN RVD

3
ACCOLEMTION DN/

& CESE DIt MR, 360 BIZ3

L 00 "w w0 haid
v T T T J

A
B —
Fom
!
o
I
i H !ﬂﬂ | ‘ i
ad 1 A
! ,‘»‘.
1

El Centro Diff. Array
360 - 270 Degrees



SEECTRUM X—COMP.

SPECTRUM Y—-COMP.

CROSS SPECTRUM

30000

20030

tocgg

R i TV

ACTOLEMTIEN ER/D/3

w W .
Y ey

6L CENTRS OMWT & N0 DXGS

L il

‘”‘%}j' { tlw\J"”x”""«‘”"“’“w“”““"
il [' b i |

i

o

[
L '
=
T R
-

}"i‘ J \“;EJ;}“ )J:(lh‘.:mﬁ'm.we,w‘&?\w .

z}

:

!;.

18

;

£ ¢ + —+ " .
THE @

FIG. 2. (cont.)"’

1T

El Centro Array 4
2830 - 140 Degrees



SRR ET MMICIPN QIWORT. 1T DICS

3% GEONEL:

GMSLEY BURICIPML RIRPBAT,

dWOD—X WNELI3dS

dNOD—A WNHLDILS

Brawley Municipal Airport

315 - 225 Degrees

WNHLD3IdS SS0dD

(cont.)

FIG. 2.

23



SPFCTRUM X —COMP.

SPECTRUM Y—COMF.

SPECTRUM

CROSS

'ODQE

\0000

\0000

$r WL PERY SFFIC. M6 S

. 100
Y

s’ AETILLL POYY OWICE I DRCNLS

-100 L] 100

v T
=
——i —ra———

4 ‘W;Li'! W il,l 'llf' et

la

THE @EC

Holtville Post Office
315 - 225 Degrees

FIG. 2. (cont.)

2



COMP.

CRUSS SPLCTRUM

CTRUM X—COMP.

S:f

SHFECTRUM Y-

6L CIuthe meatY 1 W% O(G

20000

’ b
. ;"‘:;:,“;’fv, 1" ) i|
p k ,“\ ’;:‘;’;;'I"{/?l".,’f' ! | !li :‘
o | === e R N
< '~.~ ." : > '
f?'l‘ ;}1,‘ R }-4; ST
- N \ " < ’

T e e—
e e ——

oo R

El Centro Array 10
50 - 320 Degrees

100cg

[ SN SU—

R

FIG. 2. (cont.)



SPECTRUM X~ COMP.

SPECTRUM Y—COMP.

CROSS SPECIRUM

0

FIG. 2.

(cont.)

ERLIBICE PINE KINTIEN X6 MEONLIS

L ———

| -ix‘!’lpi.“ Ly
il fih gt

CAIREDY FINE SYATION MT DLONEIS

Il
4"‘ L2’!ww#""‘;}"%?'f -

; » { | hi% . ’{)}#’l , '

Calexico Fire Station

315 - 225 Degrées



SPECTRUM X—COMP.

SPECTRUM Y—COMP.

SPECIRUM

CROSS

25000
2000g
1500g
0cop

Stog

SODQD
45000
40000
35000
30000
25039
200
oog
\Oc:)o

5CGQ

30020
20009

|§000

PRI B B A B B B B |

FIG. 2. (cont.)

JAl

ATCOLMTIEN RN/

G CIITRS &WAaY (1. 290 CRLAEES

f “}1 ‘“ﬁ‘, A
| ul |

5 llh i -

e I illlld lI‘l It i"%" Jm‘ al NM e
T

El Centro Array 11
230 - 140 Degrees



SPECTRUM Y- COMP.

CROSS SPECTRUM

SPLCTRUM X- COMP.

WSooe

FIG. 2.

8

(cont.)’

RECCRLENTION IOV

900
\:

B VIR SNS §. D MEZATLL

- ———

i ‘t"".

. Tt

*u; ‘ p'“ _
K l |,;:\‘H *‘t-rvt h,

d ¢ [}
(h . A 0,
'Zr,""-; (‘?'r‘.{i}" "‘.ﬁw(«

S CEVYAB WS 3. 20 BECAEXS

I

il

fﬂ,
f

!l ’

i

|

gy —SN

g,

AN A Mﬁ LA A L
i’y "w“ J‘F“ ““Y‘H“{" ¢

»-

El Centro Array 3

230 - 140 Degrees



SPECTRUM X—COMP.

SPECTRUM Y—COMP.

RS SPECTRUM

1 Obog

FIG. 2.

(cont.)

“

CTRLEMAT IO 1OV

Br PaNCRTE ST IRCILITE, 15 MRS

’
O

Ly

T Y T =

PeMCuOr TEST FACILITY, 308 MESMIDS

‘uy

, Al *'I Y
, !l nl"‘Y‘ !' “lﬁp,“' h{
l

Parachute Test Facility

315- 225 Degrees



SECTRUM X-- COMP.

COMP.

QL INUM Y—i

SPECTRUM

CROSS

\5%0

‘ODC()

5050

FIG. 2.

10

(cont.)

LT (G WY

et ier O

S CESTNS SRMEY }, IO GECALES

0 w0 e
v . "

-108
T

L 1 (
"‘"‘“I”'*'. !l ‘Il tl W' "&a‘k'f‘-'.‘j{ A
.I‘.ﬂ' Ii ’! 1‘“!’"'”»" W eV

T A——

-

U0 A 90 -ow

T — n s

’- & CENYPS WWSY 3. 180 SETARES

L]
t

}
le‘ l’\?j“'f‘,lh f"\','\v’\\”a'~'»-*"*’

']V

£

°

-1
T

~900
_
s

el

El Centro Array 2
230 - 140 Degrees



SPECTRUM Y—COMP. SPECTRUM X—COMP.

CROSS SPECTRUM

3500
3000

2%0g
2000
\500
1000

500

2000
1800
1000

S0p

2070

55¢

1003

S0

FIG. 2.

5\

(cont.).

0

) lﬁ'
|

A’W!}L{) % ', b i

|
E

i X "li"‘i

l'."'\i\'
g \

|

AT
e - ———

o
"

El Centro Array 12

230 - 140 Degrees



SFECTRUM X—COMP.

SPECTRUM Y—COMP.,

CROSS SPECTRUM

2000

200g

FIG. 2. (cont.)

3L

IPATRIS FINE STRTISE. 375 SEEMES

L

e

-20 1 ” L. ®
T T T s

-0
T

Calipatria Fire Station

315 - 225 Degrees



SPECTRUM X—COMP.

SPECTRUM Y—~COMP.

CROSS SPECTRUM

\500

\000

300

FIG. 2.

(cont.)

S CHMR BT (3, RO GECAEES

i
A “ i d’ M
e

El Centro Array 13
230 - 140 Degrees



SPECTRUM X—COMP.

SPECTRUM Y- COMP.

SPECTRUM

CROSS

1 500

Y000

00

1000

S0

1000

FIG. 2.

(cont.)

a an

.
- o

;e 3, (80 MZADNS

ik )
) u.”"‘ » r

El Centro Array 1
230 - 140 Degrees



SPECTRUM X—COMP.

SPECTRUM Y- COMP.

SPECTRUM

CROSS

\(.Qo

1000

FIG. 2.

23

(cont.)

s i SBFEASTITERS WBUNTRIN. 196 OLORELS

190
T

l% 'fx'l‘mwww«««w

'}\"

SUPERSTITION AMANTAIN. 88 GECAELS

” W ® L] [ J
\ Y T T T

.I i .&"k‘!’ﬂ’{r\lﬁ“km\mw\ l\’MH
{1

40 -0 4 -0 []
T T Y

Superstition Mountain

135 - 45 Degrees



SPECTRUM X—COMP.

SPECTRUM Y—COMP.

CROSS SPECTRUM

PLASTER LITY STORDMOUSE. 136 BECAES

0’ %N =
T "

L ’ﬂ W
M"*“‘fif‘\xx“?|i i A

20 8 W 2 -8
- v

Plaster City Storehouse

135 - 45 Degrees

FIG. 2. (cont.)

30



SPLCTPUM X—COMP.

SPLCTRUM Y=~TOMP.

SPLCIRUM

CROSS

420y
1209
10200
820p
€205
4200
L0

¢

300
3.0p

L m'Lmul”lml”_{l]_]{l’/[f”ﬂ/””{ﬂ”

3oy -

2009
204
g
\430
\0(_0

60g

20g

UL L L T

FIG. 2.

31

(cont.)

CINOKLLS O BLNBER &, 185 BECAEES

Coachella Canal Number 4

135 - 45 Degrees



FIG. A.1. Schematic of 2-DOF oscillator subjected to arbitrarily

oriented bi-directional base motion.
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